Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.07.23291077

ABSTRACT

One in ten SARS-CoV-2 infections result in prolonged symptoms termed "long COVID", yet disease phenotypes and mechanisms are poorly understood. We studied the blood proteome of 719 adults, grouped by long COVID symptoms. Elevated markers of monocytic inflammation and complement activation were associated with increased likelihood of all symptoms. Elevated IL1R2, MATN2 and COLEC12 associated with cardiorespiratory symptoms, fatigue, and anxiety/depression, while elevated MATN2 and DPP10 associated with gastrointestinal (GI) symptoms, and elevated C1QA was associated with cognitive impairment (the proteome of those with cognitive impairment and GI symptoms being most distinct). Markers of neuroinflammation distinguished cognitive impairment whilst elevated SCG3, indicative of brain-gut axis disturbance, distinguished those with GI symptoms. Women had a higher incidence of long COVID and higher inflammatory markers. Symptoms did not associate with respiratory inflammation or persistent virus in sputum. Thus, persistent inflammation is evident in long COVID, distinct profiles being associated with specific symptoms.


Subject(s)
Anxiety Disorders , Gastrointestinal Diseases , Fatigue , Signs and Symptoms, Digestive , Severe Acute Respiratory Syndrome , Inflammation , Cognition Disorders
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279759

ABSTRACT

Background Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. Methods Plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. Findings Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months. Nasal and plasma anti-S IgG remained elevated for at least 12 months with high plasma neutralising titres against all variants. Of 180 with complete data, 160 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal. Samples 12 months after admission showed no association between nasal IgA and plasma IgG responses, indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. Interpretation The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.22.22279060

ABSTRACT

Background. The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. Methods. We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Primary sampling units (PSU) were selected using probability proportionate to the number of households based on the 2018 national census, followed by second-stage sampling units that were selected from listed households. A random systematic sample of households was selected from each PSU within the 7 districts. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalizations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. Results. Serum samples were analysed from 4619 participants (57% female; 65% aged 14 to 50 years), of whom 1018 (22%) had received a COVID-19 vaccine. The overall assay-adjusted seroprevalence was 86.3% (95% confidence interval (CI), 85.1% to 87.5%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18 to 50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (96% vs. 77%; risk ratio, 6.65; 95% CI, 4.16 to 11.40). Urban residents were more likely to test seropositive than those living in rural settings (91% vs. 78%; risk ratio, 2.81; 95% CI, 2.20 to 3.62). National COVID-19 data showed that at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalization, 10.7% (95% CI, 10.2 to 11.3) vs 4.86% (95% CI, 4.52 to 5.23), p<0.0001; deaths, 3.48% (95% CI, 3.18 to 3.81) vs 1.15% (95% CI, 1.00 to 1.34), p<0.0001). Conclusion. We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence but low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of at-risk populations.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Death , COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.08.22278576

ABSTRACT

Background Immunocompromised patients may be at higher risk of mortality if hospitalised with COVID-19 compared with immunocompetent patients. However, previous studies have been contradictory. We aimed to determine whether immunocompromised patients were at greater risk of in-hospital death, and how this risk changed over the pandemic. Methods We included patients >=19yrs with symptomatic community-acquired COVID-19 recruited to the ISARIC WHO Clinical Characterisation Protocol UK. We defined immunocompromise as: immunosuppressant medication preadmission, cancer treatment, organ transplant, HIV, or congenital immunodeficiency. We used logistic regression to compare the risk of death in both groups, adjusting for age, sex, deprivation, ethnicity, vaccination and co-morbidities. We used Bayesian logistic regression to explore mortality over time. Findings Between 17/01/2020 and 28/02/2022 we recruited 156,552 eligible patients, of whom 21,954 (14%) were immunocompromised. 29% (n=6,499) of immunocompromised and 21% (n=28,608) of immunocompetent patients died in hospital. The odds of inhospital mortality were elevated for immunocompromised patients (adjOR 1.44, 95% CI 1.39-1.50, p<0.001). As the pandemic progressed, in-hospital mortality reduced more slowly for immunocompromised patients than for immunocompetent patients. This was particularly evident with increasing age: the probability of the reduction in hospital mortality being less for immunocompromised patients aged 50-69yrs was 88% for men and 83% for women, and for those >80yrs was 99% for men, and 98% for women. Conclusions Immunocompromised patients remain at elevated risk of death from COVID-19. Targeted measures such as additional vaccine doses and monoclonal antibodies should be considered for this group.


Subject(s)
HIV Infections , Immunologic Deficiency Syndromes , Neoplasms , Death , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.18.21268003

ABSTRACT

ABSTRACT The 4C Mortality Score (4C Score) was designed to risk stratify hospitalised patients with COVID-19. We assessed inclusion of 4C Score in COVID-19 management guidance and its documentation in patients' case notes in January 2021 in UK hospitals. 4C Score was included within guidance by 50% of sites, though score documentation in case notes was highly variable. Higher documentation of 4C Score was associated with score integration within admissions proformas, inclusion of 4C Score variables or link to online calculator, and management decisions. Integration of 4C Score within clinical pathways may encourage more widespread use.


Subject(s)
COVID-19
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1053331.v1

ABSTRACT

Background: The pathophysiology and trajectory of multiorgan involvement in post-COVID-19 syndrome is uncertain. Methods: : A prospective, multicenter, longitudinal, cohort study involving post-COVID-19 patients enrolled in-hospital or early post-discharge (visit 1) and re-evaluated 28-60 days post-discharge (visit 2). Multisystem investigations included chest computed tomography with pulmonary and coronary angiography, cardiovascular and renal magnetic resonance imaging, digital electrocardiography, and multisystem biomarkers. The primary outcome was the adjudicated likelihood of myocarditis. Results: : 161 patients (mean age 55 years, 43% female) and 27 controls with similar age, sex, ethnicity, and vascular risk factors were enrolled from 22 May 2020 to 2 July 2021 and had a primary outcome evaluation. Compared to controls, at 28-60 days post-discharge, patients with COVID-19 had persisting evidence of cardio-renal involvement, systemic inflammation, and hemostasis pathway activation. Myocarditis was adjudicated as being not likely (n=17; 10%), unlikely (n=56; 35%), probable (n=67; 42%) or very likely (n=21; 13%). Acute kidney injury (odds ratio, 95% confidence interval: 3.40 (1.13, 11.84); p=0.038) and low hemoglobin A1c (0.26 (0.07, 0.87); p=0.035) were multivariable associates of adjudicated myocarditis. During convalescence, compared to controls, COVID-19 was associated with worse health-related quality of life (EQ5D-5L) (p<0.001), illness perception (p<0.001), anxiety and depression (p<0.001), physical activity (p<0.001) and predicted maximal oxygen utilization (ml/kg/min) (p<0.001). These measures were associated with adjudicated myocarditis. Conclusions: : The illness trajectory of COVID-19 includes persisting cardio-renal inflammation, lung damage and hemostasis activation. Adjudicated myocarditis occurred in one in eight hospitalized patients and was associated with impairments in health status, physical and psychological wellbeing during community convalescence. Public registration ClinicalTrials.gov identifier is NCT04403607.


Subject(s)
Anxiety Disorders , Cardio-Renal Syndrome , Myocarditis , Acute Kidney Injury , COVID-19 , Inflammation
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.08.21260072

ABSTRACT

Healthcare workers have had the longest and most direct exposure to COVID-19 and consequently may suffer from poor mental health. We conducted one of the first repeated multi-country analysis of the mental wellbeing of medical doctors (n=5,275) at two timepoints during the COVID-19 pandemic (June 2020 and November/December 2020) to understand the prevalence of anxiety and depression, as well as associated risk factors. Rates of anxiety and depression were highest in Italy (24.6% and 20.1%, June 2020), second highest in Catalonia (24.6% and 17.4%, June 2020), and lowest in the UK (11.7% and 13.7%, June 2020). Across all countries, higher risk of anxiety and depression symptoms are found among women, individuals below 60 years old, those feeling vulnerable/exposed at work, and those in poor health. We did not find systematic differences in mental health measures between the two rounds of data collection, hence we cannot discard that the mental health repercussions of the pandemic are persistent.


Subject(s)
Anxiety Disorders , Depressive Disorder , COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256681

ABSTRACT

Cell autonomous antiviral defenses can inhibit the replication of viruses and reduce transmission and disease severity. To better understand the antiviral response to SARS-CoV-2, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that while some people can express a prenylated OAS1 variant, that is membrane-associated and blocks SARS-CoV-2 infection, other people express a cytosolic, nonprenylated OAS1 variant which does not detect SARS-CoV-2 (determined by the splice-acceptor SNP Rs10774671). Alleles encoding nonprenylated OAS1 predominate except in people of African descent. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response. Remarkably, approximately 55 million years ago, retrotransposition ablated the OAS1 prenylation signal in horseshoe bats (the presumed source of SARS-CoV-2). Thus, SARS-CoV-2 never had to adapt to evade this defense. As prenylated OAS1 is widespread in animals, the billions of people that lack a prenylated OAS1 could make humans particularly vulnerable to the spillover of coronaviruses from horseshoe bats.


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.24.21253587

ABSTRACT

Objectives: Patients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. Methods: We combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. Results: Of 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. Conclusions: Near-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings. Key words: SARS-CoV-2, COVID-19, haemodialysis, renal dialysis unit, infection control, rapid sequencing, outbreak, nosocomial Key words: SARS-CoV-2, COVID-19, haemodialysis, renal dialysis unit, infection control, rapid sequencing, outbreak, nosocomial


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.18.21253888

ABSTRACT

Structured Abstract Objectives: The long-term consequences of severe Covid-19 requiring hospital admission are not well characterised. The objective of this study was to establish the long-term effects of Covid-19 following hospitalisation and the impact these may have on patient reported outcome measures. Design: A multicentre, prospective cohort study with at least 3 months follow-up of participants admitted to hospital between 5th February 2020 and 5th October 2020. Setting: 31 hospitals in the United Kingdom. Participants: 327 hospitalised participants discharged alive from hospital with confirmed/high likelihood SARS-CoV-2 infection. Main outcome measures and comparisons: The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, new or increased disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). We compared these outcome measures across age, comorbidity status and in-hospital Covid-19 severity to identify groups at highest risk of developing long-term difficulties. Multilevel logistic and linear regression models were built to adjust for the effects of patient and centre level risk factors on these outcomes. Results: In total 53.7% (443/824) contacted participants responded, yielding 73.8% (327/443) responses with follow-up of 90 days or more from symptom onset. The median time between symptom onset of initial illness and completing the participant questionnaire was 222 days (Interquartile range (IQR) 189 to 269 days). In total, 54.7% (179/327) of participants reported they did not feel fully recovered. Persistent symptoms were reported by 93.3% (305/325) of participants, with fatigue the most common (82.8%, 255/308), followed by breathlessness (53.5%, 175/327). 46.8% (153/327) reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24.2% (79/327) of participants. Overall (EQ5D-5L) summary index was significantly worse at the time of follow-up (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. Conclusions: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present even in young, previously healthy working age adults, and were most common in younger females. Policymakers should fund further research to identify effective treatments for long-Covid and ensure healthcare, social care and welfare support is available for individuals with long-Covid.


Subject(s)
COVID-19 , Dyspnea , Fatigue
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.19.20248559

ABSTRACT

Background Mortality rates of UK patients hospitalised with COVID-19 appeared to fall during the first wave. We quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. Methods The International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK recruited a prospective cohort admitted to 247 acute UK hospitals with COVID-19 in the first wave (March to August 2020). Outcome was hospital mortality within 28 days of admission. We performed a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and hospital mortality adjusting for confounders (demographics, comorbidity, illness severity) and quantifying potential mediators (respiratory support and steroids). Findings Unadjusted hospital mortality fell from 32.3% (95%CI 31.8, 32.7) in March/April to 16.4% (95%CI 15.0, 17.8) in June/July 2020. Reductions were seen in all ages, ethnicities, both sexes, and in comorbid and non-comorbid patients. After adjustment, there was a 19% reduction in the odds of mortality per 4 week period (OR 0.81, 95%CI 0.79, 0.83). 15.2% of this reduction was explained by greater disease severity and comorbidity earlier in the epidemic. The use of respiratory support changed with greater use of non-invasive ventilation (NIV). 22.2% (OR 0.94, 95%CI 0.94, 0.96) of the reduction in mortality was mediated by changes in respiratory support. Interpretation The fall in hospital mortality in COVID-19 patients during the first wave in the UK was partly accounted for by changes in case mix and illness severity. A significant reduction was associated with differences in respiratory support and critical care use, which may partly reflect improved clinical decision making. The remaining improvement in mortality is not explained by these factors, and may relate to community behaviour on inoculum dose and hospital capacity strain. Funding NIHR & MRC


Subject(s)
COVID-19 , Respiratory Tract Infections
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361576

ABSTRACT

The COVID-19 pandemic is a widespread and deadly public health crisis. The pathogen SARS-CoV-2 replicates in the lower respiratory tract and causes fatal pneumonia. Although tremendous efforts have been put into investigating the pathogeny of SARS-CoV-2, the underlying mechanism of how SARS-CoV-2 interacts with its host is largely unexplored. Here, by comparing the genomic sequences of SARS-CoV-2 and human, we identified five fully conserved elements in SARS-CoV-2 genome, which were termed as "human identical sequences (HIS)". HIS are also recognized in both SARS-CoV and MERS-CoV genome. Meanwhile, HIS-SARS-CoV-2 are highly conserved in the primate. Mechanically, HIS-SARS-CoV-2 RNA directly binds to the targeted loci in human genome and further interacts with host enhancers to activate the expression of adjacent and distant genes, including cytokines gene and angiotensin converting enzyme II (ACE2), a well-known cell entry receptor of SARS-CoV-2, and hyaluronan synthase 2 (HAS2), which further increases hyaluronan formation. Noteworthily, hyaluronan level in plasma of COVID-19 patients is tightly correlated with severity and high risk for acute respiratory distress syndrome (ARDS) and may act as a predictor for the progression of COVID-19. HIS antagomirs, which downregulate hyaluronan level effectively, and 4-Methylumbelliferone (MU), an inhibitor of hyaluronan synthesis, are potential drugs to relieve the ARDS related ground-glass pattern in lung for COVID-19 treatment. Our results revealed that unprecedented HIS elements of SARS-CoV-2 contribute to the cytokine storm and ARDS in COVID-19 patients. Thus, blocking HIS-involved activating processes or hyaluronan synthesis directly by 4-MU may be effective strategies to alleviate COVID-19 progression.


Subject(s)
Respiratory Distress Syndrome , Pneumonia , Severe Acute Respiratory Syndrome , Dissociative Identity Disorder , COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.355842

ABSTRACT

SARS-CoV-2 can mutate to evade immunity, with consequences for the efficacy of emerging vaccines and antibody therapeutics. Herein we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is the most divergent region of S, and provide epidemiological, clinical, and molecular characterization of a prevalent RBM variant, N439K. We demonstrate that N439K S protein has enhanced binding affinity to the hACE2 receptor, and that N439K virus has similar clinical outcomes and in vitro replication fitness as compared to wild- type. We observed that the N439K mutation resulted in immune escape from a panel of neutralizing monoclonal antibodies, including one in clinical trials, as well as from polyclonal sera from a sizeable fraction of persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.

15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.09.20209957

ABSTRACT

Prognostic models to predict the risk of clinical deterioration in acute COVID-19 are required to inform clinical management decisions. Among 75,016 consecutive adults across England, Scotland and Wales prospectively recruited to the ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC4C) study, we developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) using 11 routinely measured variables. We used internal-external cross-validation to show consistent measures of discrimination, calibration and clinical utility across eight geographical regions. We further validated the final model in held-out data from 8,252 individuals in London, with similarly consistent performance (C-statistic 0.77 (95% CI 0.75 to 0.78); calibration-in-the-large 0.01 (-0.04 to 0.06); calibration slope 0.96 (0.90 to 1.02)). Importantly, this model demonstrated higher net benefit than using other candidate scores to inform decision-making. Our 4C Deterioration model thus demonstrates unprecedented clinical utility and generalisability to predict clinical deterioration among adults hospitalised with COVID-19.


Subject(s)
COVID-19 , Death
16.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3677918

ABSTRACT

Background: Viral load kinetics and duration of viral shedding are important determinants for disease transmission. The aim of this review was to characterize viral load dynamics, duration of viral RNA and viable virus shedding of SARS-CoV-2 in various body fluids, and to compare SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral dynamics.Methods: Medline, EMBASE, Europe PMC, medRxiv, bioRxiv, and grey literature from January 1st 2003 to June 6th 2020. Two authors independently extracted data and assessed study quality and risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist tools. PROSPERO registration: CRD42020181914.Findings: Seventy-nine studies on SARS-CoV-2, 8 on SARS-CoV-1, and 11 on MERS-CoV were included. Mean SARS-CoV-2 RNA shedding duration in the upper respiratory tract (URT), lower respiratory tract (LRT), stool and serum were 17.0, 14.6, 17.2 and 16.6 days, respectively. Maximum shedding duration in URT, LRT, stool and serum were 83, 59, 35 and 60 days, respectively. Pooled mean SARS-CoV-2 shedding duration was positively associated with age. No study has detected live virus beyond day nine of illness, despite persistently high viral loads. SARS-CoV-2 viral load in the upper URT appears to peak in the first week of illness, while SARS-CoV-1 and MERS-CoV peak later.Conclusion: Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived. SARS-CoV-2 titers in URT peak in the first week of illness. Early case finding and isolation, and public education on the spectrum of illness are key to the effective containment of SARS-CoV-2.Funding Statement: There was no funding for this study.Declaration of Interests: All authors have nothing to disclose.


Subject(s)
Virus Diseases
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.24.20200048

ABSTRACT

The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases. Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19. GenOMICC (Genetics Of Mortality In Critical Care, genomicc.org) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2790 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Random controls were drawn from three distinct UK population studies. We identify and replicate several novel genome-wide significant associations including variants chr19p13.3 (rs2109069, P = 3.98 x 10-12), within the gene encoding dipeptidyl peptidase 9 (DPP9), and at chr21q22.1 (rs2236757, P = 4.99 x 10-8) in the interferon receptor IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, P = 1.2 x 10-27). We identify potential targets for repurposing of existing licensed medications. Using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease. Transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. We detected genome-wide significant gene-level associations for genes with central roles in viral restriction (OAS1, OAS2, OAS3). These results identify specific loci associated with life-threatening disease, and potential targets for host-directed therapies. Randomised clinical trials will be necessary before any change to clinical practice.


Subject(s)
Critical Illness , COVID-19 , Inflammation
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.26.20180950

ABSTRACT

Introduction Very little is known about possible clinical sequelae that may persist after resolution of the acute Coronavirus Disease 2019 (COVID-19). A recent longitudinal cohort from Italy including 143 patients recovered after hospitalisation with COVID-19 reported that 87% had at least one ongoing symptom at 60 day follow-up. Early indications suggest that patients with COVID-19 may need even more psychological support than typical ICU patients. The assessment of risk factors for longer term consequences requires a longitudinal study linked to data on pre-existing conditions and care received during the acute phase of illness. Methods and analysis This is an international open-access prospective, observational multi-site study. It will enrol patients following a diagnosis of COVID-19. Tier 1 is developed for following up patients day 28 post-discharge, additionally at 3 to 6 months intervals. This module can be used to identify sub-sets of patients experiencing specific symptomatology or syndromes for further follow up. A Tier 2 module will be developed for in-clinic, in-depth follow up. The primary aim is to characterise physical consequences in patients post-COVID-19. Secondary aim includes estimating the frequency of and risk factors for post-COVID- 19 medical sequalae, psychosocial consequences and post-COVID-19 mortality. A subset of patients will have sampling to characterize longer term antibody, innate and cell-mediated immune responses to SARS-CoV-2. Ethics and dissemination This collaborative, open-access study aims to characterize the frequency of and risk factors for long-term consequences and characterise the immune response over time in patients following a diagnosis of COVID-19 and facilitate standardized and longitudinal data collection globally. The outcomes of this study will inform strategies to prevent long term consequences; inform clinical management, direct rehabilitation, and inform public health management to reduce overall morbidity and improve outcomes of COVID-19.


Subject(s)
COVID-19 , Coronavirus Infections
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.30.20165464

ABSTRACT

ObjectivesTo develop and validate a pragmatic risk score to predict mortality for patients admitted to hospital with covid-19. DesignProspective observational cohort study: ISARIC WHO CCP-UK study (ISARIC Coronavirus Clinical Characterisation Consortium [4C]). Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited between 21 May and 29 June 2020. Setting260 hospitals across England, Scotland, and Wales. ParticipantsAdult patients ([≥]18 years) admitted to hospital with covid-19 admitted at least four weeks before final data extraction. Main outcome measuresIn-hospital mortality. ResultsThere were 34 692 patients included in the derivation dataset (mortality rate 31.7%) and 22 454 in the validation dataset (mortality 31.5%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea, and C-reactive protein (score range 0-21 points). The 4C risk stratification score demonstrated high discrimination for mortality (derivation cohort: AUROC 0.79; 95% CI 0.78 - 0.79; validation cohort 0.78, 0.77-0.79) with excellent calibration (slope = 1.0). Patients with a score [≥]15 (n = 2310, 17.4%) had a 67% mortality (i.e., positive predictive value 67%) compared with 1.0% mortality for those with a score [≤]3 (n = 918, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (AUROC range 0.60-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73). ConclusionsWe have developed and validated an easy-to-use risk stratification score based on commonly available parameters at hospital presentation. This outperformed existing scores, demonstrated utility to directly inform clinical decision making, and can be used to stratify inpatients with covid-19 into different management groups. The 4C Mortality Score may help clinicians identify patients with covid-19 at high risk of dying during current and subsequent waves of the pandemic. Study registrationISRCTN66726260


Subject(s)
COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.25.20162107

ABSTRACT

Background Viral load kinetics and the duration of viral shedding are important determinants for disease transmission. We aim i) to characterise viral load dynamics, duration of viral RNA, and viable virus shedding of SARS-CoV-2 in various body fluids and ii) to compare SARS-CoV-2 viral dynamics with SARS-CoV-1 and MERS-CoV. Methods: Medline, EMBASE, Europe PMC, preprint servers and grey literature were searched to retrieve all articles reporting viral dynamics and duration of SARS-CoV-2, SARS-CoV-1 and MERS-CoV shedding. We excluded case reports and case series with < 5 patients, or studies that did not report shedding duration from symptom onset. PROSPERO registration: CRD42020181914. Findings: Seventy-nine studies on SARS-CoV-2, 8 on SARS-CoV-1, and 11 on MERS-CoV were included. Mean SARS-CoV-2 RNA shedding duration in upper respiratory tract, lower respiratory tract, stool and serum were 17.0, 14.6, 17.2 and 16.6 days, respectively. Maximum duration of SARS-CoV-2 RNA shedding reported in URT, LRT, stool and serum was 83, 59, 35 and 60 days, respectively. Pooled mean duration of SARS-CoV-2 RNA shedding was positively associated with age (p=0.002), but not gender (p = 0.277). No study to date has detected live virus beyond day nine of illness despite persistently high viral loads. SARS-CoV-2 viral load in the upper respiratory tract appears to peak in the first week of illness, while SARS-CoV-1 and MERS-CoV peak later. Conclusion: Although SARS-CoV-2 RNA shedding in respiratory and stool can be prolonged, duration of viable virus is relatively short-lived. Thus, detection of viral RNA cannot be used to infer infectiousness. High SARS-CoV-2 titres are detectable in the first week of illness with an early peak observed at symptom onset to day 5 of illness. This review underscores the importance of early case finding and isolation, as well as public education on the spectrum of illness. However, given potential delays in the isolation of patients, effective containment of SARS-CoV-2 may be challenging even with an early detection and isolation strategy. Funding: No funding was received.

SELECTION OF CITATIONS
SEARCH DETAIL